东芝在“2010 Symposium on VLSI Technology”(2010年6月15~17日,美国夏威夷州檀香山)上,发布了采用09年开始量产的40nm工艺SoC的低电压SRAM技术。该技术为主要用于便携产品及消费类产品的低功耗工艺技术。通过控制晶体管阈值电压的经时变化,可抑制SRAM的最小驱动电压上升。东芝此次证实,单元面积仅为0.24μm2的32Mbit SRAM的驱动电压可在确保95%以上成品率的情况下降至0.9V。因此,低功耗SoC的驱动电压可从65nm工艺时的1.2V降至0.9V以下。
降低SRAM的电压是SoC实现微细化时存在的最大技术课题之一。SRAM由于集成尺寸比逻辑部分小的晶体管,因此容易导致每个晶体管的阈值电压不均。而且,使6个晶体管联动可实现存储器功能,因此每个晶体管的不均都容易引发性能不良。所以,尖端SoC“需要以较高的成品率制造大容量且低电压工作的 SRAM的技术”(东芝半导体系统LSI业务部系统LSI元件技术开发部部长亲松尚人)。
此次,作为满足该要求的混载SRAM技术,东芝开发出了不易受NBTI(negative bias temperature instability)等导致的阈值电压变化影响的晶体管技术。NBTI是指晶体管的阈值电压随着时间的推移,受印加电压及温度的影响发生变化的现象。该公司此次的技术由2个要素构成,分别是(1)控制NBTI发生,(2)控制NBTI等导致的阈值电压变动对晶体管工作造成的影响。
(1)作为控制NBTI发生的技术,该公司向多晶硅栅极及SiON栅极绝缘膜的界面附近添加了Hf(铪)。Hf可作为使SiON栅极绝缘膜与硅底板界面上存在的氧原子悬空键(Dangling Bond)相互结合的催化剂发挥作用。由此可控制悬空键引起的NBTI现象。该技术以东芝与NEC电子(现在的瑞萨电子)的CMOS工艺技术共同开发成果为基础,于08年开发而成。
(2)为了降低NBTI等导致的阈值电压变动给晶体管工作造成的影响,该公司使镍发生了硅化反应,并对其周边工艺进行了改进。这样,镍便会在硅底板中异常扩散,形成结漏电流源,从而控制晶体管的阈值电压随着NBTI等发生大幅变动的现象。
东芝采用这些方法在SoC上混载了50M~60Mbit左右的SRAM,而关于DRAM,则采用通过40μm引脚的微焊点(Microbump)使其与SoC芯片层积的方法。东芝已通过部分65nm工艺导入了该方法,今后还打算在40nm工艺上沿用。东芝的亲松表示“从DRAM的容量、数据传输速度及工艺成本等方面来判断,尖端工艺最好不要在SoC上混载DRAM”。东芝的目标是“向客户提供结合最尖端的SoC技术与SiP技术的模块”。目前DRAM 的最大容量约为512Mbit,东芝计划今后使1Gbit以上的DRAM与SoC实现芯片层积”。
资讯排行
- 买不起触摸版MacBook?其实用iPad也能体验
- 珀金埃尔默新型QSight™ 三重四极杆液质联用仪帮助分析实验室实现高灵敏度、高通量和高效率样品分析进程
- 村田适用于车载以太网BroadR-Reach的静噪元件
- LTE-V2V协议冻结 开启汽车智能网联市场大幕
- Hexiwear,一款可以编程的手表
- 三美电机开发出小型MEMS压阻式数字压力传感器
- 借助新型60V FemtoFET MOSFET缩小工业元件占位面积
- Maxim发布业界最小八通道高边驱动器MAX14913,全面提升工业4.0应用体验
- 安森美半导体扩展CMOS 图像传感器PYTHON系列,推出紧凑的SVGA器件
- 大数据时代的核心:超高速短距离光互联
- 七大不可思议 盘点3D打印机技术惊奇应用
- 拍子弹时间不是问题!超高速抓拍单电点评
- 打电话上网全能 超低价3G通讯平板推荐
- 双城记(长崎&东京) 三桥NEX-5R日本游记之三
- 蒸汽朋克再袭 四款DIY达人USB产品秀