您当前位置: 电子仪器网 >> 综合资讯 > 详细信息
东芝发布40nm工艺SoC用低电压SRAM技术
相关专题: 技术创新  发布时间:2010-06-21
资讯导读:东芝在2010 Symposium on nology上,发布了采用09年开始量产的40nm工艺SoC的低电压SRAM

东芝在“2010 Symposium on VLSITechnology”上,发布了采用09年开始量产的40nm工艺SoC的低电压SRAM技术。该技术为主要用于便携产品及消费类产品的低功耗工艺技术。通过控制晶体管阈值电压的经时变化,可抑制SRAM的最小驱动电压上升。东芝此次证实,单元面积仅为0.24μm2的32MbitSRAM的驱动电压可在确保95%以上成品率的情况下降至0.9V.因此,低功耗SoC的驱动电压可从65nm工艺时的1.2V降至0.9V以下。


  降低SRAM的电压是SoC实现微细化时存在的最大技术课题之一。SRAM由于集成尺寸比逻辑部分小的晶体管,因此容易导致每个晶体管的阈值电压不均。而且,使6个晶体管联动可实现存储器功能,因此每个晶体管的不均都容易引发性能不良。所以,尖端SoC“需要以较高的成品率制造大容量且低电压工作的SRAM的技术”(东芝半导体系统LSI业务部系统LSI元件技术开发部部长亲松尚人)。


  此次,作为满足该要求的混载SRAM技术,东芝开发出了不易受NBTI(negative bias temperatureinstability)等导致的阈值电压变化影响的晶体管技术。NBTI是指晶体管的阈值电压随着时间的推移,受印加电压及温度的影响发生变化的现象。该公司此次的技术由2个要素构成,分别是(1)控制NBTI发生,(2)控制NBTI等导致的阈值电压变动对晶体管工作造成的影响。


  在确保95%以上成品率的情况下,SRAM的驱动电压可降至0.9V


通过向栅极绝缘膜添加Hf,控制NBTI 


  通过改进硅化工艺,控制结漏导致的阈值电压漂移


  (1)作为控制NBTI发生的技术,该公司向多晶硅栅极及SiON栅极绝缘膜的界面附近添加了Hf(铪)。Hf可作为使SiON栅极绝缘膜与硅底板界面上存在的氧原子悬空键(DanglingBond)相互结合的催化剂发挥作用。由此可控制悬空键引起的NBTI现象。该技术以东芝与NEC电子(现在的瑞萨电子)的CMOS工艺技术共同开发成果为基础,于08年开发而成。


  (2)为了降低NBTI等导致的阈值电压变动给晶体管工作造成的影响,该公司使镍发生了硅化反应,并对其周边工艺进行了改进。这样,镍便会在硅底板中异常扩散,形成结漏电流源,从而控制晶体管的阈值电压随着NBTI等发生大幅变动的现象。


  东芝采用这些方法在SoC上混载了50M~60Mbit左右的SRAM,而关于DRAM,则采用通过40μm引脚的微焊点(Microbump)使其与SoC芯片层积的方法。东芝已通过部分65nm工艺导入了该方法,今后还打算在40nm工艺上沿用。东芝的亲松表示“从DRAM的容量、数据传输速度及工艺成本等方面来判断,尖端工艺最好不要在SoC上混载DRAM”.东芝的目标是“向客户提供结合最尖端的SoC技术与SiP技术的模块”.目前DRAM的最大容量约为512Mbit,东芝计划今后使1Gbit以上的DRAM与SoC实现芯片层积。

来源:LED环球在线   编辑:fengzemin  
免责声明: 本站所有信息均来自网络和相关会员发布,本站已经过审核,如有发现第三者他人利用各种借口理由和不择手段恶意发布、涉及到您或您单位的肖像及知识产权等其他不便公开的隐私和商业信息时,敬请及时与我们联系删除处理。但为此造成的经济或各种纠纷损失本站不负任何责任,特此声明! 本站联系处理方式:图文发送至QQ邮箱: 523138820@qq.com或微信: 523138820,联系手机: 15313206870。